Using Squarified Treemaps for Structural Clones' Visualization

Umber Nisarl, Hamid Abdul Basit2
IDepartment of Computer Science Forman Christian College University, Lahore, Pakistan

2Department of Computer Science Lahore University of Management Sciences, Lahore, Pakistan

Abstract

Novel programming languages propose numerous
abstraction methods to promote reuse of code fragments
but this often leads to several duplicated code fragments
so called clones. Clones recur in a particular fashion in
software to constitute structural clones. This paper
presents a squarified treemaps visual technique to
effectively represent higher level structural clones to the
programmers to facilitate further maintenance or
reengineering activities based on these clones.

Keywords— Code Clones, Structural Clones,
Squarified Treemap, Higher Level Clone.

I. Introduction

Software clones, replicated code blocks, duplicated code
fragments_ all such terms are used to refer code clones.
According to Ira Baxter “Clones are the segments of code
that are similar according to some definition of similarity”
[1]. The emergence of clones is the result of copying and
pasting the code once written to reuse for some other task
within a larger software systems [2]. The dark side of
reusing the same code fragment is that it adds a lot to the
maintenance cost of the system, it is one of the reasons of
introducing bugs by reusing a buggy code and its
presence also leads to poorly designed system.

When the code that is being copied forms some recurring
pattern within a system then such clones become part of
advanced clones' type called structural clones [3].
Structural clones give bigger picture of similarity
situation than simple clones alone [3]. Figure 2 shows an
example of structural clones referenced from the paper on
Detecting Higher-Level Clones in Software [3].

Consider al, a2 and a3 are code blocks and are copy of
each other and together they form a group of simple
clones. Similarly b1, b2, b3 form another group and this
continues till the group of g's comprising of g1, g2 and g3.
When the configurations of simple clones recur in files
X1, X2 and X3, then we call the group of such
configurations a file level structural clone set. Similarly,
the file level structural collaboratively may further form
still higher level structural clones.

48

Figure 1 Structural clone example

In order to decrease software maintenance cost,
complexity and bug propagation the software should be
made free of the clones [4]. Clone detection has several
advantages e.g. it improve software quality, detects
library candidates, increases program understanding,
finds patterns, detects plagiarism and helps in making the
code compact. The papers [6], [3] explain well the
advantages of detecting simple and structural clone
respectively.

To achieve the advantages, a proper clone detection
mechanism is required. Several software clone detection
techniques [5] have been developed which help
developers in code refactoring. The best way however is
to make them visualize at one glance. A paper on survey of
clone visualizations [7] explains well the clone
visualization techniques. All the techniques represent the
detected clones in their own ways but there are also
associated limitations of each one. Some are not suitable
for larger data, some cannot well represent the structural
clones, some are not appropriate for hierarchical data and
some cannot simply well represent all the data nodes
simultaneously for larger data.

According to the paper [8], the rooted tree is one of the
most well-known tree representations for hierarchical
information like directory structures. It says that the tree
is based on node-link visualization in which the
relationship between parent and child nodes is depicted
with line connections.

The paper [9] gives sound reasoning of the requirement to
move from simple tree to treemaps. It says that the tree
views are very effective for small data but they fall short



in case of larger data which is to be viewed
simultaneously. And the main reason of this limitation is
the inefficient use of display space as the background
covers most of the pixels. To cope with this problem
treemaps [10] were introduced by Ben Shneiderman. The
full display space is used efficiently. According to the
research in this paper, the simple treemap is the result of
recursive subdivision of original rectangle. The resulting
sub-rectangles' sizes depict the corresponding node sizes.
At each level, the direction of subdivision varies, may be
first there is a horizontal subdivision then vertical
subdivision etc. The figure 2 below is an example of
simple treemap.

Figure 2 Treemap

The paper on Squarified treemaps [9] explains that the
subdivision of original rectangle in case of simple
treemaps results in a problem of producing thin and
lengthened rectangles. The nodes at one level are treated
similar so the appearance of small file is degraded relative
to its bigger sibling nodes. To solve the above problem
advanced form of treemaps emerged called “Squarified
treemaps. The squares in Squarified treemaps have low
aspect ratio, help in using the display space still more
efficiently, improves the accuracy of representation and
no doubt the square nodes are easier to detect and point
out. An example of squarified treemap with steps
involved in squarification can be seen in a well known
squarified treemaps paper [9]. The aim of this work is to
effectively visualize the structural clones. The
methodology used to attain the aim is by using an
advanced form of treemaps called Squarified Treemaps.

I1. Structural Clone Visualization Results

Keeping in view the vast advantages of representing
hundreds of hierarchical nodes simultaneously, we chose
Squarified treemaps to represent the structural clones
effectively. The input data to our software is the output
produced by a clone detector called Clone Miner. The
paper [11] describes well the clone miner. It says that it
does not only finds simple clones but also their repeating
configurations in files or even in directories using data
mining techniques. The paper describes that first it
detects Simple Clones Classes (SCC) from a tokenized
representation of the source code. And then by using
frequent item set mining technique finds repeated
configurations of simple clones across method and files to
form first level of cloning abstractions. At the end the

49

Clone Miner uses clustering techniques to recognize next
level of cloning abstractions. The paper further describes
the types of structural clones that can be found using
clone miner, which are:
¢ Repeat configurations of simple clones

o in the same method (SCS_In Method)

o across different methods (SCS_Acoss Method)
Repeated configurations of simple clones

o in the same file (SCS_In_File)

o across different files (SCS_Across_File)
Method clone classes (MCC)
File clone classes (FCC)
Repeated configurations of method clones

o in the same file (MCS_In_File)

o across different files (MCS_Across_File)
Repeated configurations of file clones

o in the same directory (FCS_in-Dir)

o across different directories (FCS_Across_Dir)

The explanations for simple, method and file clone
classes and their higher level configurations are well
explained in paper on structural clones.

Our structural clone visualization software is
implemented in php (Hypertext Preprocessor), server
scripting language, to make it dynamic and interactive.
The architecture used is MVC (Model View Controller)
and framework is Codeigniter.

The software takes the output table produced by clone
miner as input data to work on. After that it converts the
data into a json (JavaScript Object Notation) array. Then
it creates treemap using JavaScript library d3. It also uses
Html (HyperText Markup Language), SVG (Scalable
Vector Graphics) and CSS (Cascading Style Sheets) to
bring the data to life.

Each structural clone is represented with different levels
which are System View With Directory, System View
with Directories and Files, Directory View with Files,
File view with Methods. The user may filter results by
selecting the structural clones of his choice and also can
define the threshold values for Average Percentage
Coverage (APC) and Average Token Coverage (ATC)
and the software outputs the structural clones fulfilling
the selected criteria.

A. System View with Directories

Figure 3 System View with Directories



The figure 3 shows the squarified treemap having the
whole system as its base. The base rectangle is then
subdivided to show directories within the system. Each
rectangle within the system depicts a directory. One can
also see the hierarchical view of different directories. The
size of parent directory is the sum of the sizes of its child
directories. Each rectangle is labeled with the name of the
directory. The colors are used to show the instances of the
structural clones. In this figure three instances of the
structural clone are depicted with different colors. Also if
one rectangle involves the intersection of more than one
instance then a separate color is used to help the viewer
understand the intersection at one glance. The instance of
first selected scs instances are shown with maroon, second
with pink, third with purple, the intersection of first and
second with red, the intersection of second and third with
orange, the intersection of third and first with green and
the intersection of all three with blue color.

B. System View with Directories andfiles

=

Figure 4 System View with Directories and Files

The figure 4 is view involving computer system at its base
but includes directories and files also within the
directories. So this figure comprises three hierarchical
levels, the system having the directories and directories
having files inside. Now one can clearly see that the same
space used in figure (1a) is now being used to represent a
lot more information. This is because the squarified
treemaps are formed as a result of recursive subdivision of
the rectangles. Now the rectangles here in this figure,
represent the system, the directories and files. Each
directory size represents the space it consumes in that
system. One can easily grab the idea about the size of the
files compared to others by the amount of space it is
consuming of the whole view. All the files are shown
within the directory rectangle of which they are part of.
Here again the three instances are shown with the instance
of first selected scs instances shown with maroon, second
with pink, third with purple, the intersection of first and
second with red, the intersection of second and third with
orange, the intersection of third and first with green and
the intersection of all three with blue color.

50

C. Directory View with files

Figure 5 Directory View with Files

It is not necessary to have the whole system as the base of
this squarified treemap. One can have a clearer view of any
directory by having it at the base of the treemap as shown
in figure 5. Now that the directory is the base one can view
the files inside it more evidently. The size of each file is the
inkling of the space it utilizes within a directory. Again at
this level we have shown the first selected scs with maroon
color, second with pink, third with purple, and the
intersection of first and second with red, the intersection of
second and third with orange, the intersection of third and
first with green and the intersection of all three with blue
color.

D. File View with methods

Figure 6 File View with Methods

Now the figure 6 is file view with methods. If one wants to
view all the methods within a file then it can also be seen
with the file, one is interested to view as the base and all the
methods inside the file. It is amazing that one can get the
idea of size of method and structural clones inside within
the squarified treemap. The rectangles sizes within the file
view are the clue of the space each individual method is
consuming within the file. The structural clones' instances
and their intersection can clearly be seen with different
color shades. The ones used in the figure are like that of
first selected scs shown in maroon color, second with pink,
third with purple, and the intersection of first and second
with red, the intersection of second and third with orange,
the intersection of third and first with green and the
intersection of all three with blue color.



II1. Discussion

Below is the performance analysis of software. The
response time of the software depends on the number of
nodes in the hierarchy. The software provides well
organized representation of structural clones for hundreds
of nodes. In case the number of nodes is very big and the
area of very small file is degraded as compared to larger
nodes in hierarchy, the hierarchical zooming feature helps
in getting an improved version of that view. The user can
make the parent of the very small file as the root node and
then can easily get approximate view of the space
consumed by its child node. Similarly he can unset that
root node by just simple clicks. The visualization of
structural clones with squarified treemaps utilizes the
display space very efficiently. It provides a compact view
of all hierarchy nodes. The area taken by node is directly
proportional to its size. It no doubt provides good
approximation of space consumption by a particular
directory/file with all its file/method nodes. At one glance,
the user gets an idea that which of my directory/file
contains structural clone and then can perform
maintenance tasks etc. Treemaps as compared to the
different visualization techniques like rooted tree view,
wheel view, dot plot etc. does not waste the display space
in the background and the view also does not go beyond a
page. All the view is confined within certain area with each
and every pixel representing useful information. In
comparison with other treemapping algorithms, the
squarified treemaps also provide better view.

IV. Conclusion

The visualization software is no doubt a compact view for
hierarchical information like directory, file structures. It
provides an efficient and well-organized view for
hundreds of nodes. The different types of structural clones
are well represented at multiple levels of the hierarchy. To
provide better depiction of structural clones various color
schemes have been incorporated. The different types of
filtering mechanisms also assist user in getting the useful
information. Multiple enhancements like zooming,
textual tooltips, highlighting etc. have been added to give
improved display of the structural clones. It is also made
interactive using different animation phenomenon. It
helps user to detect structural clones with less time and
effort. The user can thus improve software quality,
increase software understanding, detect plagiarism, find
patterns, detect library candidates, analyze changes
impacts and perform refactoring. The structural clone
visualization software provides simple, interactive and
efficient display of structural clones for hierarchical data.

References

[1]

Tom Mens, Serge Demeyer, Software Evolution,
2008.

Ira D.Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant' Anna, Lorraine Bier, “Clone
Detection Using Abstract Syntax Trees”, 1998.

[2]

51

[12]

Hamid Abdul Basit, Stan Jarzabek, “A Data Mining
approach for Detecting Higher-Level Clones in
Software”, 2009.

Cory J. Kasper, “Toward an Understanding of
Software Code Cloning as a Development
Practice”, 2009.

Rainer Koschke, “Survey of Research on Software
Clones”, 2007.

Chanchal Kumar Roy, James R. Cordy, “A Survey
on Software Clone Detection Research”,2007.

Muhammad Hammad, Hamid Abdul Basit, Stan
Jarzabek, “Evaluating Clone Visualization
Techniques from User Goals' Perspective”, 2012.

Danny Holten, “Hierarchical Edge
Bundles:Visualization of Adjacency Relations in
Hierarchical Data”, 2006.

Mark Bruls, Kees Huizing, Jarke J. vanWijk,
“Squarified Treemaps”.

B. Johnson and B. Shneiderman. “Treemaps: a
space-filling approach to the visualization of
hierarchical information structures”.

Yali Zhang, Hamid Abdul Basit, Stan Jarzabek,
Dang Anh, and Melvin Low, “Query-based Filtering
and Graphical View Generation for Clone
Analysis”, 2008.

Hamid Abdul Basit, Usman Ali, Sidra Haque, 2012,
“Things Structural Clones Tell that Simple Clones
Don't”,2012.



