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ABSTRACT

This article is concerned with FD (Fault Detection) in
PARR-2 (Pakistan Research Reactor-2) using a subspace
aided parity-based FD scheme. The safety is of vital
importance for nuclear reactors and in time fault
diagnosis is necessary for safe operation. Conventional
model-based FD approaches required the mathematical
model of the process. For complex systems like nuclear
reactors, the modeling of the system is too much
complicated. Due to the availability of huge process data
of the reactor and largely inaccessibility moreover as the
complexity of the process model, data-driven approaches
are effective fault diagnosis techniques for reactors.
Subspace aided parity-based data-driven FD approach is
a simple, efficient FD approach and has required less
online computations. By using a subspace-aided
approach, an optimized parity vector is identified directly
from the process data instead of the identification of the
system model. The identified parity vector is utilized to
compute residual generator that ensures robustness
against system noises and disturbances and sensitivity to
faults. The parity-based FD scheme is successfully
implemented for PARR-2. Two possible faults in PARR-2
that are external reactivity insertion fault and control rod
withdrawal fault are considered and detected
successfully. GLR (Generalized Likelihood Ratio) based
threshold setting is used for efficient FD and reduce false
fault detection rate.

Key Words: Fault Detection, Data-Driven, Pakistan
Research Reactor-2.

1. INTRODUCTION

Nuclear power plants have become predominant
supporters of the energy resources of the world. They are
generating about 11% of world energy IEA (International
Energy Agency) [1]. Presently, almost 450 nuclear power
plants are in operation and these numbers are increasing.
Nuclear energy is clean, competitive, safe and reliable
among other resources [2].

It is of vital importance to decrease and prevent the
hazards of faults occurring within a nuclear reactor. The
improvement in safety and capacity factor of a nuclear
reactor is of central importance. Some certain preventive
measure must be there to deal with critical issues in
nuclear reactors. Three Mile Island accident [3] drew the
attention of researchers towards the application of FD
methods for consistent and safe operation of nuclear
reactors. In that accident, the recovery procedure became

complicated because of the complex alarm and indicator
system. This complex system confused the reactor
operational crew and they failed in recognizing the alarms
and indications properly.

Model-based FD techniques are well-established and
effective techniques in fault diagnosis [4-6]. These
approaches depend vigorously upon accessible system
model. The residual signal is constructed by comparing
the output of the process and the estimated output of the
analytical process model, which shows the information of
fault. Model-based techniques are effective for those
systems whose mathematical model is available. It is
noticed that for majority of the industrial processes,
modeling demands considerable engineering efforts and
in some cases becomes impractical. For industrial
processes, the data-driven FD approaches have been
developed which do not oblige the process models a priori
for developing FD systems. Over the previous decade,
momentous advancement has been done in the domain of
data-driven fault diagnosis [7-12]. Data-driven schemes
are most appropriate for fault diagnosis of nuclear
reactors, as most of the times model is unavailable and
complex, meanwhile, the huge amount of input and
sensor output data is available during the operation that
can be used to design fault diagnosis strategy.

Among data-based FD schemes, PCA (Principal
Component Analysis), FDA (Fisher Discriminant
Analysis) and KFDA (Kernel Fisher Discriminant
Analysis) have been successfully practiced in PARR-2
[10-11]. But these techniques involve huge online
computation and also mostly faulty data is unavailable
while for FDA and KFDA both healthy and faulty data are
required. Remarkable work has been made by Ding et. al.
[13], Wang et. al. [14], Hussain et. al. [15] and Tariq et. al.
[16] in parity-based data driven approach. Nuclear
reactors have a complex model and access to model is not
available. Due to inaccessibility and complexity of the
model, the data-driven FD schemes are well suited for
nuclear reactors. Among data-driven FD schemes, parity-
based data-driven FD approach is easy and simple for
implementation; it also required only fault-free data for
processing and less online computation that is why this
approach is most suitable for FD in PARR-2.

In this article, a subspace-aided parity-based data-driven
FD strategy is implemented for FD in PARR-2. The data
samples are collected in fault-free conditions and under
two faults i.e. external reactivity insertion and control rod
withdrawal faults due to safety limitations. This fault
detection approach is effective, simple and involves least
online computations. It also shows robustness against
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disturbances and sensor noises. Generalized likelihood
ratio based threshold setting is used for FD decision that
alsoreduces the false alarm rate.

The forthcoming discussion in this article is classified as:
In Section-2 review of subspace aided parity based data-
driven technique is discussed then PARR-2is briefly
explained in Section-3. Section-4 justifies the application
of FD scheme employed in PARR-2 and its simulation
results. At last, the conclusion is presented in Section-5.

2. REVIEW OF SUBSPACE AIDED DATA
DRIVEN BASED FAULT DETECTION
TECHNIQUE

Ding et. al. [13] proposed data-based parity space
algorithm, then remarkable progress has been done in this
direction by Wang et. al. [14], Hussain et. al. [15] and
Tariget. al.[16].

Consider a discrete LTI system given as:

x(k+1)=Gx(k )+ Fi(u(k)+ £, (k )+ wik)

(k)= Cx(k )+ D(ulk )+ £, (k )+ vk )+ £, (k) M

Here,G e R™,H R"M,a eR™ De RmX/.x(k)e R™
is state vector, 4(k )e R"is input vector, f,(k), f(k) are
actuator and sensor fault vectors respectively and w(k),
v(k) are disturbance and noise respectively.

As from (1)
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From above expression it can be combined as:
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For subspace based data driven technique (5) could be
modified as:
®)

= = i i
Yy =T X+ LUy + Ty Wy + Ny

where,T,, .T;, are lower block Toeplitz deterministic and
stochastic matrices respectively. W, and N; are
disturbance and noise block hankel matrices respectively.
Equation (8) can also be expressed in the form
Y,

5 _ T T | X | | Tay + Ny
S, o 1 |U; 0

By post multiplying with Z; on both sides and dividing

by N, above equation will becomes:
sr_

o
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As an Eigen value problem, the solution of Equation (10)

will be:
ii T
? ymin (F;ququ | Y ) (11)
is minimum Eigen vector, Agmin 1S minimum
l—\l
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where, / 4min

Eigen value, and 0L, ={ is optimal robust
\parity vector.

The core element of FDI is the generation of
residualsy(k).

¥(k) # 0 if f(t) # 0 (12)
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Residual is computed by the following relation.

y(k): Oy @q (k)_ Tgtq )

Where a,, is optimal robust parity vector. From Equations
(5) and Equation (13) the residual generator in the
existence of disturbances and noises can be composed as:

v(<)= o, @ 11y )+ Ty, )+ v, )+ £,(K))  (19)

ALGORITHM-1 SUBSPACE AIDED PARITY SPACE FAULT
DETECTION

(13)

Step-1:  Store n fault free input-output samples.
Step-2:  Construct past and future input-output block hankel matrices
and build Z andZ ;.
p S

I o7
Step-3:  Perform SVD on — ZfZ .

N p

€ L i .

Step-4:  Extract the terms T q and I’ q ’Z ! using Equation (9).
Step-5:  Find optimal robust parity vector using Equations (10-11).
Step-6:  Compute residual using Equation (13).

3. PAKISTAN RESEARCHREACTOR-2

PARR-2 an indigenously developed tank in pool type
reactor capacity of 27-30 kW. The reactor is operating
since 1991. It is a miniature neutron source reactor which
operating with a 90% enriched fuel based on U-235. The
fuel material consists of U-Al Alloy (UAI, — Al). Light
water used for both cooling and neutron moderation
purpose. Whereas heavy water, beryllium and graphite
are used as neutron reflectors. The maximum thermal flux
and maximum fast flux are rated as 10e™” and 107¢™
n/cm’s. It has a total number of 344 fuel rods along with
control rods, 6 tie rods and 4 other dummy rods. The
control rods are developed with Cd (Cadmium). The
PARR-2 has been used to produce radio isotopes [17].

PARR-2 has a negative temperature coefficient due to its
under- moderated core array. Therefore, the reactivity
diminishes with increase in temperature, which damps
the power excursions. Another salient feature of the
reactor is its lower overabundance reactivity. The lower
excess reactivity of core eliminates the danger of any
critical incident. Thus provides additional benefits of
safety. During exchange of heat between coolant and fuel
an expansion in the coolant temperature is observed
because the negative arbitrator coefficient of reactor
minimizes the undue reactivity.

The most widely recognized faults that may happen amid
the operations are control rod withdrawal and
coincidental external reactivity insertion. Movement of
control rod controlled the reactivity in core. Control rod
withdrawal causes the insertion of positive reactivity that
upgrade the power and fuel temperature. Because of
inalienable safe attributes, this power outing will confine
itself to 87 kW, fuel and clad temperature are beneath the
immersion temperature of water. The examples are

normally illuminated in the light locales amid tests. In
these tests, if a fissile material case is implanted
fortuitously in one among the brightening goals then
reactivity is introduced in the core, state of flux can
increase and power outgoing can happen that can increase
the fuel and clad temperature.

4. APPLICATION OF FAULT DETECTION
SCHEME IN PARR-2

The input-output data is acquired from accessible sensors
of PARR-2 in both fault free and faulty case. Control rod
withdrawal and external reactivity faults are introduced in
PARR-2 and 120 measurements are recorded in presence
of each fault. The inlet, outlet, pool temperatures and pool
conductivity data collected from sensors. Reactivity and
neutron flux are considered as actuators inputs.
Observations were recorded under normal conditions in
steady state with sampling time of 1 sec. The control rod
was up to 15% to introduce control rod withdrawal fault
and external reactivity was inserted for addition of
external reactivity fault. Under each fault condition 120
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measurements were recorded. The data of PARR-2 is
taken from our references[10,17].
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Fig. 1 indicates the residual in non-faulty case. Then
external reactivity fault is inserted from sample 40 to
onward, Fig. 2 indicates the presence of external
reactivity fault at sample 40. Fig. 3 shows the residual
when control rod withdrawal fault is introduced at sample

40.

For successful FD and reduced false FD rate threshold is
used. Residual is also effected by noise and disturbances
that's why threshold setting is important for successful
FD. Fault will occur ifresidual exceed the threshold level.
GLRbased threshold setting is utilized here. GLR is
explained in [4,18]. Steps for GLR based threshold
setting for false detection rate<a and noise is assumed to
be normal distributed N(0,5°,) is mentioned in
Algorithm-2.

ALGORITHM-2 GLR BASED THRESHOLD
SETTING [4]

Step-1:  Find X, .e. P[X>>X,] = o using chi-square distribution.
Step-2:  Set threshold as: Jry = Ho/2..
1 N
Step-3:  The testing statistic is computed as: J = > ZY(i)z
where, y(i)is residual of i sample. 26N i=l
Step-4:  Fault will be occurred if J > Jry..

FIG. 5. GLR PLOT FOR CONTROL ROD WITHDRAWAL FAULT

GLR plots are presented in Figs. 4-5. Fig.4 indicates the
residual plot in the presence of external reactivity fault
and Fig.5 indicates the residual in the presence of control
rod withdrawal fault. In the case of both faults, it indicates
that when a fault occurs at sample 40 the residual across
the threshold level. External reactivity and control rod
withdrawal faults both are successfully detected. There
are no false fault detection or miss fault detection as
shownin Fig. 4-5.

Compared with the results of [10] the false alarm rate
using this technique is reduced. The main advantage of
using parity-based approach is it reduces online
computation. For preprocessing faulty data is not
mandatory as required in FDA, and KFDA. Performance
index used to diminish the influences of disturbances and
sensor noises on residual that increases the effectiveness
ofalgorithm and becomes robust against disturbances.

5. CONCLUSION

In this article, the subspace-aided data-driven FD
technique is successfully applied in PARR-2. The more
possible faults i.e. external reactivity and control rod
withdrawal faults are introduced and tested using this FD
approach. Subspace aided parity-based FD technique is
effective and simple in implementation for FD in PARR-
2. It reduces the online computations as compared to
PCA, FDA, and KFDA. It depends only on fault-free
process data and information about the system model is
not required. To address the issue of disturbances and
sensor noise, an optimal parity vector is identified that
minimizes the effect of disturbances and enhances faults
effects on residual. The results demonstrate the
effectiveness of the technique for PAAR-2.

6. FUTURE WORK

In future, the work can be extended to identify the level of
fault so that it can be tolerated as much as it is possible.
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