Analysis of Stability Radius of Inverted Pendulum on a Cart System
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Abstract:

This paper discusses the concept of stability radius and
presents an evaluation of the same for inverted
pendulum on a cart system. In a system, robustness can
be calculated or determined by using stability radius. It
is shown through example that the usual margins (gain
and phase margins) may not always present an
accurate measure of stability robustness. Simulation
results indicate that some parameters in the system may
affect the stability radius more than the others. The
results also indicate the effect of simultaneous changes
in system parameters on the stability radius may be
highly nonlinear and non-monotonic. Finally, a design
guideline for inverted pendulum mass to length ratio
has been derived from the resullts.
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1. Introduction

Stability is one of the major concerns in control systems.
A good amount of research has been done on achieving
stability in multiple systems. In nonlinear inverted
pendulum system, the pendulum rod is stabilized in its
upward direction by moving the attached cart. This is one
ofthe benchmarks for research in control systems.

Inverted pendulum structure is a platform in which cart
can only move in horizontal direction and pendulum rod
(initially facing downwards) is attached with cart. Hence
the rod is in its stable equilibrium state.

The purpose of this research paper is to analyze stability
of inverted pendulum by varying either the rod's mass or
rod's length or varying both simultaneously. Among the
existing work, robustness analysis is done using
fractional PID controller on ADAMS-MATLAB co-
simulation using recursive least squares method in [1].
There is extensive literature on robustness testing of
dynamic systems. But the method proposed is different in
that it uses the concept of stability radius rather than usual
concepts of gain and phase margins. In[2], linear matrix
inequality (LMI) tool is used to test the robustness of
system that is modeled using combination of Particle
Swarm Optimization (PSO) and Takagi Sugeno (T-S)
fuzzy control approach. In [3], analytical study of
inverted pendulum system has been done using high
frequency harmonic excitations. Larger the intensity of
stochastic excitation or strength of frequency
perturbations, larger is the Lyapunov exponent which
destabilizes the system. Neural networks propose to
behave more robust controller but in absence of
disruptive effects over performances in perturbed
conditions when balancing non-linear inverted pendulum
system[4][5][6]. In[7], controller are designed to stabilize
inverted pendulum in upright position using feedback by
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checking if sampling time delay was not large enough,
controller keeps the system stabilized. Adaptive control
schemes for inverted pendulum have been discussed in
[819] where [8] presents the neural network based
approach whereas sliding mode controller based
approach has been explored in[9].

As the cart can move only in horizontal track and
pendulum rod can move w.r.t a single angle, the dynamics
of the system can be described as pendulum angle 6,
pendulum angular velocity §, card position x and cart
velocity x. This system also has some constraints like the
cart can move up to a finite limited length and pendulum
rod can move up to some finite limited angle on which the
cart can move and steer back the pendulum rod to
stabilize. Beyond that angle, the rod cannot be stabilized
in its upright position. The pendulum rod in its upright
position is in unstable equilibrium state when 6=0
(vertically upward), some control method is needed to be
applied to maintain the stability of the system.

Research has been done earlier on stabilization of
inverted pendulum by using feedback controller response
or by using fixed feedback. Stability of the system can
also be analyzed with respect to variations in the mass of
pendulum rod or in pendulum rod's length so that
controller can behave more robust against external
uncertainties. In this paper, we have made some variation
in pendulum original mass and rod's length and analyzed
the system stability. Major difference of the approach
used in this paper from the existing work is that we have
made use of the knowledge of stability radius for our
analysis as opposed to conventional tools such as root
locus Bode plot or Nyquist plot.

2. The Concept of Stability Radius:

The concept of stability radius is presented in [10].
Stability radius is defined as the radius of the smallest
circle centered at the critical point (-1 + 05) that touches
the Nyquist plot of the open loop transfer function of the
feedback control system. In order to clearly understand
the definition, consider the feedback control system
shown in Figure 1.
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Figure 1: Feedback Control System
The loop transfer function for the above system is given

by L(s) =C()6(s)
()
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The Nyquist plot of this loop transfer function is used to
depict closed loop stability, gain margin and phase
margin. The methods of finding the stability and the
margins are in every control systems text book e.g.[11].
Stability radius is however a different concept as
illustrated in Figure 2. As defined earlier, it is the radius of
the circle touching the Nyquist plot of the open loop
transfer function L/(s). In order to understand the
importance of stability radius, one has to understand the
importance of sensitivity function given by

S(s) 2

1

T14L(s)
The sensitivity function imposes many constraints on the
closed loop performance [11]. Specifically, larger the
value of sensitivity, more prone is the system performance
to external disturbances. The way gain and phase margins
are defined, it is possible to have a system with infinite
gain margin and a good (> 60°) phase margin and yet poor
stability due to high value of sensitivity function.
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Figure 2: Example of Stability Radius

For example, in the system of Figure 2 (L(s)=1/5%+s))
gain margin is infinite and phase margin is 51.8" yet
sensitivity value is high for a range of frequencies. This
tells us that it is important to analyze the stability radius of
the systems. In this paper, we have done such analysis for
an inverted pendulum because it is a benchmark system.
Similar analysis can be performed on other systems in
order to study the stability radius as a function of changes
in system parameters. Such study can help in designing
more robust and disturbance tolerant systems.

3. Inverted Pendulum Model

In figure 3, rod and cart system is shown on which force is
being applied. Force on cart is represented as N in
horizontal direction. Force on rod is represented as P in
vertical direction.

From forces in horizontal direction (for the cart), the
equation below can be obtained

Mi=F—fit-N 3)

where.

F=Force being applied on cart

x=Horizontal position of cart

f=damping coefficient

N=Force exerted on the cart in horizontal direction due to
motion of the pendulum

M=mass of the cart
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Figure 3: Inverted Pendulum on a Cart System

From the force acting on the rod in horizontal direction we
get d

N= m—(x—lsmtp} 4)
[=length of the pendulum rod
¢o=Angle ofthe rod
m=mass of pendulum rod
Equation (4) can be written as,
N =mi — mldcosbmld’sing (5)

Substituting equation (5) into equation (3), first equation
for non-linear system obtained is

(M +mlf+ fi=mifcose + migsing = F

Similarly, combining the forces acting on the rod in
vertical direction, we obtain second equation of motion

(6)

Linearization of equations (]r) and (6) about the
equilibrium point [x = ¢ gI"=[0 0 0 ol
results in the following state space equation in matrix
form.

(I + mi*)¢ — mglsing = miicose
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where u = F and the output equations can be written as,
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By using equation (5), we can form
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Now, we have achieved the values for the system matrix
for which we are going to analyze by changing length and
mass to test the robustness of the system.

4. Stability Radius Analysis

In control systems, one of the dominant issue is to obtain
robustness and stability. One of the main problem in
analysis of robustness is to confirm that the system under
study is able to maintain the stability under certain
(defined/variable) conditions. Stability radius can be
considered as the distance to instability. A system canbe
termed as natural robust if it has covered distance from
point of instability to point of stability by keeping same
dimensions. In different industry scenarios, it is
conveniently easy to deal with polynomials of closed
loop system e.g. for a system with single output or for
with single inputs. One of the fundamental property of a
system in closed loop analysis is to achieve or obtain the
roots on a complex plane. If all the roots lie with stability
region, the system (polynomial within complex variable)
will be termed as stable.

All simulations are carried out using constant mass of the
cart that is 0.792 kg. Increasing the length of the
pendulum rod does not have much effect on stability
radius as shown in Figure 4. The stability radius is
changing in a little fraction with increase in pendulum
rod's length as shown in Figure 5 (length variation from
0.304 m to 10 m in intervals of 0.8 m). Although the
change in stability radius with respect to length is not
very significant but reaching to a conclusion that
increasing or decreasing the length does not affect
stability would be too soon at this point. Therefore further
analysis has been performed using the mass to length
ratio in order to determine more realistic effect of change
in length on the stability of the system. In practice,
increasing the length does increase the overall mass of
the system. -

Figure4: Nyquist Diagram for variation of length
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Figure5: Length vs Stability Radius



Now if we vary the mass on pendulum rod, the response
and change in stability radius is decreasing. The response
is shown in Figure 6 and Figure 7 (mass variation from
0.231 kg to 10 kg in intervals of 0.8 kg). Figure 6 shows
that the Nyquist plot corresponding to various values of
pendulum mass differ significantly. Comparing Figure 6
with Figure 4, the effect of variation in mass on stability
is higher than that of length. But as stated earlier,
variation in length does involve variation in mass. If we
change both mass and length simultaneously, stability
radius behavior shows abrupt decrease as shown in
Figure 8 (mass over length ratio variation from 0.01 kg/m
to 100 kg/m in intervals of 0.05 kg/m). This result
indicate that the selection of mass to length ratio of
inverted pendulum should be selected below 20 or 15 i.e.
mass (in kilograms) should not be more than 20 times the
length (in meters) for reasonable stability robustness.
Such a conclusion is difficult to obtain from conventional
root contour method and is very important for designing a
robust stable system.
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Figure6: Nyquist plot for variation of pendulum rod mass
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Figure7: Mass vs Stability Radius
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Figure8: Mass and length variation vs Stability Radius
1. Conclusions

Variations in the stability radius are shown for an inverted
pendulum on a cart system as function of variations in
mass and length of the rod. The results show that there is

nontrivial variation in the stability radius when both
parameters are changed simultaneously. It is also shown
that the length alone does not affect the stability radius by
a great amount. From these results, the motivation for the
readers is to do such analysis on the systems to be
controlled and identify parameters that affect the stability
radius more than the others. Such analysis can help in
achieving closed loop stability that is robust to parameter
changes.
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